High-Dimensional Covariance Matrix Estimation(SpringerBriefs in Applied Statistics and Econometrics)

高维协方差矩阵估计:随机矩阵理论导论

经济统计学

原   价:
946.67
售   价:
710.00
优惠
平台大促 低至8折优惠
发货周期:国外库房发货,通常付款后3-5周到货!
作      者
出  版 社
出版时间
2021年10月15日
装      帧
平装
ISBN
9783030800642
复制
页      码
110
语      种
英文
版      次
2021
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个